# Cautious Uncertainty Modelling for Common-Cause Failure Models

Gero Walter

TU Eindhoven, NL

g.m.walter@tue.nl

02.04. 2015

# Outline

- Common-cause failure modelling (joint work with Matthias Troffaes and Dana Kelly)
- Generalised Bayesian inference with sets of conjugate priors (joint work with Thomas Augustin)



Source: Wikimedia Commons, http://commons.wikimedia.org/wiki/File:Fukushima\_I\_by\_Digital\_Globe.jpg



Source: Wikimedia Commons, http://commons.wikimedia.org/wiki/File:Fukushima\_I\_by\_Digital\_Globe.jpg

 All 12 generators (for 6 reactors) at Fukushima Daiichi were not available due to flooding of machine rooms (Tsunami triggered by Tōhoku earthquake)

 All 12 generators (for 6 reactors) at Fukushima Daiichi were not available due to flooding of machine rooms (Tsunami triggered by Tōhoku earthquake)

#### common-cause failure

 All 12 generators (for 6 reactors) at Fukushima Daiichi were not available due to flooding of machine rooms (Tsunami triggered by Tōhoku earthquake)

#### common-cause failure

simultaneous failure of several redundant components due to a common or shared root cause (Høyland and Rausand 1994)

• Reliability of redundant systems

 All 12 generators (for 6 reactors) at Fukushima Daiichi were not available due to flooding of machine rooms (Tsunami triggered by Tōhoku earthquake)

#### common-cause failure

- Reliability of redundant systems
- Usually 2 4 emergency diesel generators per reactor

 All 12 generators (for 6 reactors) at Fukushima Daiichi were not available due to flooding of machine rooms (Tsunami triggered by Tōhoku earthquake)

#### common-cause failure

- Reliability of redundant systems
- Usually 2 4 emergency diesel generators per reactor
- Sufficient cooling of core if one generator works

 All 12 generators (for 6 reactors) at Fukushima Daiichi were not available due to flooding of machine rooms (Tsunami triggered by Tōhoku earthquake)

#### common-cause failure

- Reliability of redundant systems
- Usually 2 4 emergency diesel generators per reactor
- Sufficient cooling of core if one generator works
- Redundant components may not fail independently: common-cause failure

 All 12 generators (for 6 reactors) at Fukushima Daiichi were not available due to flooding of machine rooms (Tsunami triggered by Tōhoku earthquake)

#### common-cause failure

simultaneous failure of several redundant components due to a common or shared root cause (Høyland and Rausand 1994)

- Reliability of redundant systems
- Usually 2 4 emergency diesel generators per reactor
- Sufficient cooling of core if one generator works
- Redundant components may not fail independently: common-cause failure

Must include common-cause failures in overall system reliability analysis

# **Common-Cause Failure Models**





Above: CDC, http://phil.cdc.gov/phil/ ID 1194

Right: Wikimedia Commons,

http://commons.wikimedia.org/wiki/File:Graphic\_TMI-2\_Core\_End-State\_Configuration.png

# **Basic Parameter Model**

#### Basic Parameter Model (Mosleh et al. 1988)

- immediate repair
- failure events follow Poisson process
- system with k exchangeable components
- $q_j$ : rate for failures involving *exact j* components (j = 1, ..., k)

• 
$$(q_1,\ldots,q_k) =: \boldsymbol{q}$$

 $q_j \neq 0$  for  $j \ge 2$ : lack of independence for individual component failures

# **Basic Parameter Model**

#### Basic Parameter Model (Mosleh et al. 1988)

- immediate repair
- failure events follow Poisson process
- system with k exchangeable components
- q<sub>j</sub>: rate for failures involving *exact j* components (j = 1,...,k)
  (q<sub>1</sub>,...,q<sub>k</sub>) =: q

 $q_j \neq 0$  for  $j \ge 2$ : lack of independence for individual component failures

q is difficult to estimate directly:

- failure data often collected per component
- sparse data on joint failures
- reparametrisation: alpha-factor model

# Alpha-Factor Model

**Total Failure Rate** 

$$q_t = \sum_{j=1}^k \binom{k-1}{j-1} q_j \qquad (1)$$

Alpha-Factors  

$$\alpha_{j} = \frac{\binom{k}{j}q_{j}}{\sum_{\ell=1}^{k}\binom{k}{\ell}q_{\ell}}$$
(2)

total or marginal failure rate: failure rate obtained by looking just at single components probability of j of the k components failing due to a common cause given that failure occurs

$$q_j = \frac{1}{\binom{k-1}{j-1}} \frac{j\alpha_j}{\sum_{\ell=1}^k \ell \alpha_\ell} q_t$$
(3)

$$\boldsymbol{q} \Longleftrightarrow (\boldsymbol{q}_t, \alpha_1, \dots, \alpha_k)$$

Data

observed per-component failure rates to estimate  $q_t$ 

#### Data

common-cause failure counts to estimate  $(\alpha_1, \ldots, \alpha_k)$ 

# Total Failure Rate: Data Model & Parameter Estimation

Poisson Process for Observed Per-Component Failures

$$p(M \mid q_t, T) = \frac{(q_t T)^M e^{-q_t T}}{M!}$$

where

- total failure rate q<sub>t</sub>
- number of per-component (i.e. marginal)
   failures M := total number of component failures occured (two-component failure = two failures, ...)
- time under risk T := sum of time elapsed for each of the components

#### Estimation of $q_t$

usually immedially possible: use, e.g., maximum likelihood estimator

$$\hat{q}_t = \frac{M}{T}$$

(5)

(4)

Multinomial Distribution for Common-Cause Failure Counts

$$p(\boldsymbol{n} \mid \boldsymbol{\alpha}) = \prod_{j=1}^{k} \alpha_{j}^{n_{j}}$$
(6)

#### where

- alpha-factor α<sub>j</sub> := probability of j of the k components failing due to a common cause given that failure occurs
- failure count *n<sub>j</sub>* := corresponding number of failures observed
- **n** denotes  $(n_1, \ldots, n_k)$  and  $\alpha$  denotes  $(\alpha_1, \ldots, \alpha_k)$

## Estimation of $\alpha$

$$\hat{\alpha}_j = rac{n_j}{n}$$
, where  $\sum_{j=1}^k n_j = n$ 

## Estimation of $\alpha$

$$\hat{\alpha}_j = rac{n_j}{n}$$
, where  $\sum_{j=1}^k n_j = n$ 

#### Estimation of $\alpha$

$$\hat{lpha}_j = rac{n_j}{n}, \hspace{1em}$$
 where  $\sum_{j=1}^k n_j = n$ 

## Estimation of $\alpha$

$$\hat{lpha}_j = rac{n_j}{n}, \hspace{1em}$$
 where  $\sum_{j=1}^k n_j = n$ 

## Estimation of $\alpha$

$$\hat{\alpha}_j = \frac{n_j}{n}$$
, where  $\sum_{j=1}^k n_j = n$ 

#### Estimation of $\alpha$

$$\hat{\alpha}_j = rac{n_j}{n}$$
, where  $\sum_{j=1}^k n_j = n$ 

## Estimation of $\alpha$

$$\hat{lpha}_j = rac{n_j}{n}$$
, where  $\sum_{j=1}^k n_j = n$ 

# Estimation of $\alpha$

$$\hat{lpha}_j = rac{n_j}{n}, \hspace{1em}$$
 where  $\sum_{j=1}^k n_j = n$ 

#### Estimation of $\alpha$

$$\hat{\alpha}_j = \frac{n_j}{n}$$
, where  $\sum_{j=1}^k n_j = n$ 

#### Estimation of $\alpha$

$$\hat{lpha}_j = rac{n_j}{n}$$
, where  $\sum_{j=1}^k n_j = n$ 

### Estimation of $\alpha$

$$\hat{\alpha}_j = rac{n_j}{n}$$
, where  $\sum_{j=1}^k n_j = n$ 

## Estimation of $\alpha$

$$\hat{lpha}_j = rac{n_j}{n}, \hspace{1em}$$
 where  $\sum_{j=1}^k n_j = n$ 

## Estimation of $\alpha$

$$\hat{\alpha}_j = rac{n_j}{n}$$
, where  $\sum_{j=1}^k n_j = n$ 

## Estimation of $\alpha$

$$\hat{\alpha}_j = rac{n_j}{n}$$
, where  $\sum_{j=1}^k n_j = n$ 

#### Estimation of $\alpha$

$$\hat{\alpha}_j = \frac{n_j}{n}$$
, where  $\sum_{j=1}^k n_j = n$ 

## Estimation of $\alpha$

$$\hat{x}_j = rac{n_j}{n}$$
, where  $\sum_{j=1}^k n_j = n_j$ 

Estimation of  $\alpha$ 

maximum likelihood estimator:

$$\hat{\alpha}_j = \frac{n_j}{n}$$
, where  $\sum_{j=1}^n n_j = n$ 

## The Problem

- typically, for *j* ≥ 2, the *n<sub>j</sub>* are very low with zero being quite common for larger *j*
- zero counts = flat likelihoods  $\implies \hat{\alpha}_j = ?$

Estimation of  $\alpha$ 

maximum likelihood estimator:

$$\hat{\alpha}_j = \frac{n_j}{n}$$
, where  $\sum_{j=1}^n n_j = n$ 

## The Problem

- typically, for *j* ≥ 2, the *n<sub>j</sub>* are very low with zero being quite common for larger *j*
- zero counts = flat likelihoods  $\implies \hat{\alpha}_j = ?$

- need to rely on epistemic information: Bayesian inference

Estimation of  $\alpha$ 

maximum likelihood estimator:

$$\hat{\alpha}_j = \frac{n_j}{n}$$
, where  $\sum_{j=1}^n n_j = n$ 

## The Problem

- typically, for *j* ≥ 2, the *n<sub>j</sub>* are very low with zero being quite common for larger *j*
- zero counts = flat likelihoods  $\implies \hat{\alpha}_j = ?$

- need to rely on epistemic information: Bayesian inference

#### Bayesian inference procedure

```
prior + likelihood \rightarrow posterior
```

using Bayes' Rule

All inferences are based on the posterior

# Bayesian Inference: Dirichlet Prior

lpha considered as uncertain parameter on which we put...

Dirichlet Distribution (→ Dirichlet-Multinomial Model)

$$p(\alpha \mid s, t) \propto \prod_{j=1}^{k} \alpha_{j}^{st-1}$$
 where  $(s, t)$   
are hyperparameters  
 $s > 0$   
 $t \in \Delta = \left\{ (t_{1}, \dots, t_{k}) : t_{1} \ge 0, \dots, t_{k} \ge 0, \sum_{j=1}^{k} t_{j} = 1 \right\}$
# Bayesian Inference: Dirichlet Prior

lpha considered as uncertain parameter on which we put. . .

Dirichlet Distribution (→ Dirichlet-Multinomial Model)

$$p(\alpha \mid \mathbf{s}, \mathbf{t}) \propto \prod_{j=1}^{k} \alpha_{j}^{s\mathbf{t}-1} \qquad \text{where } (\mathbf{s}, \mathbf{t}) \\ \text{are hyperparameters} \\ \mathbf{s} > 0 \\ \mathbf{t} \in \Delta = \left\{ (t_{1}, \dots, t_{k}) : t_{1} \ge 0, \dots, t_{k} \ge 0, \sum_{j=1}^{k} t_{j} = 1 \right\}$$

#### Interpretation

- **t** = prior expectation of  $\alpha$ , i.e., a prior guess for  $\frac{n_j}{n}$ , j = 1, ..., n
- s = determines spread and learning speed (see next slide)

#### **Dirichlet Posterior**

• posterior density for  $\alpha$  is again Dirichlet ( $\rightarrow$  conjugacy):

$$p(\alpha \mid \boldsymbol{n}, \boldsymbol{s}, \boldsymbol{t}) \propto \prod_{j=1}^{k} \alpha_{j}^{s\boldsymbol{t}_{j}+n_{j}-1}$$
(7)

• posterior expectation of  $\alpha_j$ :

$$\mathsf{E}[\alpha_j \mid \boldsymbol{n}, \boldsymbol{s}, \boldsymbol{t}] = \int_{\Delta} \alpha_j \, \boldsymbol{p}(\alpha \mid \boldsymbol{n}, \boldsymbol{s}, \boldsymbol{t}) d\alpha = \frac{\boldsymbol{s}}{\boldsymbol{s} + \boldsymbol{n}} \frac{\boldsymbol{t}_j}{\boldsymbol{s} + \boldsymbol{n}} \cdot \frac{\boldsymbol{n}_j}{\boldsymbol{n}} \quad (8)$$

we will focus on  $E[\alpha_j | n, s, t]$ (in a decision context, this expectation would typically end up in expressions for expected utility)

# Example: Epistemic Information and Data

#### Example (from Kelly and Atwood 2011)

Consider a system with four redundant components (k = 4). The analyst specifies the following prior expectation  $\mu_{\text{spec},i}$  for each  $\alpha_i$ :

$$\mu_{ ext{spec,1}} = 0.950$$
  $\mu_{ ext{spec,2}} = 0.030$   $\mu_{ ext{spec,3}} = 0.015$   $\mu_{ ext{spec,4}} = 0.005$  (9)

We have 36 observations, in which 35 showed one component failing, and 1 showed two components failing:

$$n_1 = 35$$
  $n_2 = 1$   $n_3 = 0$   $n_4 = 0$  (10)

#### **Non-Informative Priors**

large variation in posterior under different non-informative priors

• with constrained maximum entropy prior (Atwood 1996; Kelly and Atwood 2011):

 $E[\alpha_1 \mid \boldsymbol{n}, \boldsymbol{s}, \boldsymbol{t}] = 0.967 \qquad E[\alpha_2 \mid \boldsymbol{n}, \boldsymbol{s}, \boldsymbol{t}] = 0.028 \\ E[\alpha_3 \mid \boldsymbol{n}, \boldsymbol{s}, \boldsymbol{t}] = 0.003 \qquad E[\alpha_4 \mid \boldsymbol{n}, \boldsymbol{s}, \boldsymbol{t}] = 0.001$ 

• with uniform prior  $t_j = 0.25$  and s = 4:

 $\begin{aligned} \mathsf{E}[\alpha_1 \mid \bm{n}, \bm{s}, \bm{t}] &= 0.9 \\ \mathsf{E}[\alpha_3 \mid \bm{n}, \bm{s}, \bm{t}] &= 0.025 \end{aligned} \qquad \begin{aligned} \mathsf{E}[\alpha_2 \mid \bm{n}, \bm{s}, \bm{t}] &= 0.025 \\ \mathsf{E}[\alpha_4 \mid \bm{n}, \bm{s}, \bm{t}] &= 0.025 \end{aligned}$ 

• with Jeffreys' prior  $t_i = 0.25$  and s = 2:

 $E[\alpha_1 \mid \boldsymbol{n}, \boldsymbol{s}, \boldsymbol{t}] = 0.9342 \qquad E[\alpha_2 \mid \boldsymbol{n}, \boldsymbol{s}, \boldsymbol{t}] = 0.0395 \\ E[\alpha_3 \mid \boldsymbol{n}, \boldsymbol{s}, \boldsymbol{t}] = 0.0132 \qquad E[\alpha_4 \mid \boldsymbol{n}, \boldsymbol{s}, \boldsymbol{t}] = 0.0132$ 

# Imprecise Dirichlet Model: Definition

Troffaes, Walter, and Kelly (2014): model vague prior info more cautiously

Imprecise Dirichlet Model (IDM) for Common-Cause Failure use a set of hyperparameters (Walley 1991; Walley 1996)

 $\mathcal{L} = \left\{ (s, t) : s \in [\underline{s}, \overline{s}], t \in \Delta, t_j \in [\underline{t}_j, \overline{t}_j] \right\}$ 

# Imprecise Dirichlet Model: Definition

Troffaes, Walter, and Kelly (2014): model vague prior info more cautiously

Imprecise Dirichlet Model (IDM) for Common-Cause Failure use a set of hyperparameters (Walley 1991; Walley 1996)

 $l = \left\{ (\boldsymbol{s}, \boldsymbol{t}) \colon \boldsymbol{s} \in [\underline{\boldsymbol{s}}, \overline{\boldsymbol{s}}], \, \boldsymbol{t} \in \Delta, \, \boldsymbol{t}_{j} \in [\underline{\boldsymbol{t}}_{j}, \overline{\boldsymbol{t}}_{j}] \right\}$ 

#### Interpretation

- we are doing a sensitivity analysis (á la robust Bayes) over (s, t) ∈ H
- we take a set of priors based on *H* as model for prior information (details later)

# Imprecise Dirichlet Model: Definition

Troffaes, Walter, and Kelly (2014): model vague prior info more cautiously

Imprecise Dirichlet Model (IDM) for Common-Cause Failure use a set of hyperparameters (Walley 1991; Walley 1996)

 $l = \left\{ (\mathbf{s}, \mathbf{t}) \colon \mathbf{s} \in [\underline{\mathbf{s}}, \overline{\mathbf{s}}], \ \mathbf{t} \in \Delta, \ \mathbf{t}_j \in [\underline{\mathbf{t}}_j, \overline{\mathbf{t}}_j] \right\}$ 

#### Interpretation

- we are doing a sensitivity analysis (á la robust Bayes) over (s, t) ∈ H
- we take a set of priors based on *H* as model for prior information (details later)

Analyst has to specify ('elicit') bounds  $[\underline{s}, \overline{s}]$  and bounds  $[\underline{t}_j, \overline{t}_j]$  for each  $j \in \{1, ..., k\}$ 

•  $[\underline{t}_i, \overline{t}_i]$ ? Cautious interpretation of prior specifications  $\mu_{\text{spec},i}$ :

$$[\underline{t}_1, \overline{t}_1] = [0.950, 1] \qquad [\underline{t}_2, \overline{t}_2] = [0, 0.030] \\ [\underline{t}_3, \overline{t}_3] = [0, 0.015] \qquad [\underline{t}_4, \overline{t}_4] = [0, 0.005]$$

- $[\underline{t}_i, \overline{t}_i]$ ? Cautious interpretation of prior specifications  $\mu_{\text{spec},i}$ :
  - $[\underline{t}_1, \overline{t}_1] = [0.950, 1]$   $[\underline{t}_2, \overline{t}_2] = [0, 0.030]$   $[\underline{t}_3, \overline{t}_3] = [0, 0.015]$   $[\underline{t}_4, \overline{t}_4] = [0, 0.005]$
- [<u>s</u>, <u>s</u>]? Good (1965):

reason about posterior expectations for hypothetical data

- $[\underline{t}_i, \overline{t}_i]$ ? Cautious interpretation of prior specifications  $\mu_{\text{spec},i}$ :
  - $[\underline{t}_1, \overline{t}_1] = [0.950, 1]$   $[\underline{t}_2, \overline{t}_2] = [0, 0.030]$   $[\underline{t}_3, \overline{t}_3] = [0, 0.015]$   $[\underline{t}_4, \overline{t}_4] = [0, 0.005]$
- [<u>s</u>, <u>s</u>]? Good (1965):

reason about posterior expectations for hypothetical data

 $\overline{s}$  = number of one-component failures required to reduce the upper probabilities of multi-component failure by half

 $\overline{s}$  = number of one-component failures required to reduce the upper probabilities of multi-component failure by half

 $\overline{s}$  = number of one-component failures required to reduce the upper probabilities of multi-component failure by half

 $\overline{s}$  = number of one-component failures required to reduce the upper probabilities of multi-component failure by half

 $\overline{s}$  = number of one-component failures required to reduce the upper probabilities of multi-component failure by half

 $\overline{s}$  = number of one-component failures required to reduce the upper probabilities of multi-component failure by half

 $\overline{s}$  = number of one-component failures required to reduce the upper probabilities of multi-component failure by half

 $\overline{s}$  = number of one-component failures required to reduce the upper probabilities of multi-component failure by half

 $\overline{s}$  = number of one-component failures required to reduce the upper probabilities of multi-component failure by half

 $\overline{s}$  = number of one-component failures required to reduce the upper probabilities of multi-component failure by half

 $\overline{s}$  = number of one-component failures required to reduce the upper probabilities of multi-component failure by half

 $\overline{s}$  = number of one-component failures required to reduce the upper probabilities of multi-component failure by half

 $\overline{s}$  = number of one-component failures required to reduce the upper probabilities of multi-component failure by half

 $\overline{s}$  = number of one-component failures required to reduce the upper probabilities of multi-component failure by half

 $\overline{s}$  = number of one-component failures required to reduce the upper probabilities of multi-component failure by half

 $\overline{s}$  = number of one-component failures required to reduce the upper probabilities of multi-component failure by half

 $\overline{s}$  = number of one-component failures required to reduce the upper probabilities of multi-component failure by half

 $\underline{s}$  = number of multi-component failures required to reduce the lower probability of one-component failure by half

Reasonable values in example:

- s̄ = 10: after observing 10 one-component failures
  → halve upper probabilities of multi-component failures
- <u>s</u> = 1: immediate multi-component failure
  - → keen to reduce lower probability for one-component failure

 $\overline{s}$  = number of one-component failures required to reduce the upper probabilities of multi-component failure by half

 $\underline{s}$  = number of multi-component failures required to reduce the lower probability of one-component failure by half

Reasonable values in example:

- s̄ = 10: after observing 10 one-component failures
  → halve upper probabilities of multi-component failures
- <u>s</u> = 1: immediate multi-component failure
  - → keen to reduce lower probability for one-component failure

Difference between  $\underline{s}$  and  $\overline{s}$  reflects a level of caution:

The rate at which we reduce upper probabilities

is less than the rate at which we reduce lower probabilities

#### Imprecise Dirichlet Model: Inference

With  $[\underline{s}, \overline{s}] = [1, 10]$ , we get...

prior bounds + data  $\rightarrow$  posterior bounds

| j | <u>t</u> j | $\overline{t}_j$ | nj | $\underline{E}[\alpha_j \mid \boldsymbol{n},\mathcal{H}]$ | $\overline{E}[\alpha_j \mid \boldsymbol{n},\mathcal{H}]$ |
|---|------------|------------------|----|-----------------------------------------------------------|----------------------------------------------------------|
| 1 | 0.950      | 1                | 35 | 0.967                                                     | 0.978                                                    |
| 2 | 0          | 0.030            | 1  | 0.0270                                                    | 0.0283                                                   |
| 3 | 0          | 0.015            | 0  | 0                                                         | 0.00326                                                  |
| 4 | 0          | 0.005            | 0  | 0                                                         | 0.00109                                                  |

# Gamma Prior and Posterior

 $q_t$  considered as uncertain parameter on which we put...

Gamma Distribution

$$p(q_t \mid \boldsymbol{u}, \boldsymbol{v}) \propto q_t^{\boldsymbol{u}\boldsymbol{v}-1} e^{-q_t \boldsymbol{u}}$$
(11)

where (u, v) are hyperparameters with u > 0 and v > 0.

#### Interpretation

- v = prior expectation of q<sub>t</sub>
- *u* = determines learning speed (just like s in the IDM)
- posterior density for *q*<sup>*t*</sup> is again Gamma:

$$p(q_t \mid M, T, \boldsymbol{u}, \boldsymbol{v}) \propto q_t^{\boldsymbol{u}\boldsymbol{v} + M - 1} e^{-q_t(\boldsymbol{u} + T)}$$
(12)

posterior expectation of q<sub>t</sub>:

$$\Xi[q_t \mid M, T, u, v] = \frac{u}{T+u} v + \frac{T}{T+u} \cdot \frac{M}{T}$$
(13)

Imprecise Gamma Model use a set of hyperparameters:

$$=\left\{ (u, v) : u \in [\underline{u}, \overline{u}], v \in [\underline{v}, \overline{v}] \right\}$$
(14)

- [v, v]? Bounds for prior expectation of q<sub>t</sub> should be easy to find (choosing v = 0 is possible)
- [*u*, *u*]? Similar reasoning as for the IDM leads to...

 $\overline{u}$  = timespan for observing the process required to raise the lower expectation of  $q_t$  from 0 to half of observed failure rate  $\frac{M}{T}$ ( $\underline{v} = 0$  is assumed)

 $\underline{u}$  = timespan for observing the process *without any failures* required to reduce the lower expectation of  $q_t$  by half ( $\underline{v} > 0$  is assumed)

 $\underline{u} = \overline{u}$  can be reasonable here, as zero counts are less of an issue

# Inference on Common-Cause Failure Rates q<sub>i</sub>

combine our models for  $\alpha$  and  $q_t$  by using Eq. (3):

$$q_j = g_j(\alpha)q_t$$
 where  $g_j(\alpha) = \frac{1}{\binom{k-1}{j-1}} \frac{j\alpha_j}{\sum_{\ell=1}^k \ell \alpha_\ell}$ 

#### The Problem

no closed expression for  $\mathsf{E}[g_j(lpha) \mid \ldots]$  due to rational function of lpha

#### The Good News

naive approximation  $\tilde{g}_j(\alpha)$  of  $g_j(\alpha)$  by Taylor expansion works surprisingly well (absolute error term available)

$$\mathsf{E}[q_j \mid \boldsymbol{n}, \boldsymbol{s}, \boldsymbol{t}; \boldsymbol{M}, \boldsymbol{T}, \boldsymbol{u}, \boldsymbol{v}] \approx \mathsf{E}\left[\tilde{g}_j(\boldsymbol{\alpha}) \mid \boldsymbol{n}, \boldsymbol{s}, \boldsymbol{t}\right] \mathsf{E}[q_t \mid \boldsymbol{M}, \boldsymbol{T}, \boldsymbol{u}, \boldsymbol{v}]$$
(15)

( $q_t$  and  $\alpha$  are assumed to be independent)

in.

-

# **Global Sensitivity Analysis**

We can do a global sensitivity analysis for E[q<sub>j</sub> | ...]
 → bounds for E[q<sub>j</sub> | ...] taking into account approximation error and epistemic uncertainty expressed through and :

$$\underline{\mathsf{E}}[q_j \mid \boldsymbol{n}, \boldsymbol{M}, \boldsymbol{T}, \quad , \quad ] \approx \underline{\mathsf{E}}[\tilde{g}_j(\alpha) \mid \boldsymbol{n}, \quad ] \, \underline{\mathsf{E}}[q_t \mid \boldsymbol{M}, \boldsymbol{T}, \quad ] \tag{16}$$

where

 $\underline{E}[\tilde{g}_{j}(\alpha) \mid \boldsymbol{n}, ] = \min_{\substack{(s,t) \in \\ (u,v) \in }} \underline{E}[\tilde{g}_{j}(\alpha) \mid \boldsymbol{n}, s, t] \quad \text{(by num. optimization)} \quad (17)$   $\underline{E}[q_{t} \mid M, T, ] = \min_{\substack{(u,v) \in \\ (u,v) \in }} E[q_{t} \mid M, T, u, v] \quad \text{(by closed form solution)} \quad (18)$ 

Do the same for  $\overline{E}[q_j | n, M, T, , ]$  by replacing min with max.

• bounds, rather than precise values, are desirable due to inferences being strongly sensitive to the prior particularly when faced with zero counts.

- bounds, rather than precise values, are desirable due to inferences being strongly sensitive to the prior particularly when faced with zero counts.
- simple ways to elicit the parameters of the model by reasoning on hypothetical data

- bounds, rather than precise values, are desirable due to inferences being strongly sensitive to the prior particularly when faced with zero counts.
- simple ways to elicit the parameters of the model by reasoning on hypothetical data
- sets of hyperparameters allow a full sensitivity analysis reflecting epistemic uncertainty on all parts of the model

- bounds, rather than precise values, are desirable due to inferences being strongly sensitive to the prior particularly when faced with zero counts.
- simple ways to elicit the parameters of the model by reasoning on hypothetical data
- sets of hyperparameters allow a full sensitivity analysis reflecting epistemic uncertainty on all parts of the model
- use credible intervals instead of bounds on expectations?
# Intermediate Summary

- bounds, rather than precise values, are desirable due to inferences being strongly sensitive to the prior particularly when faced with zero counts.
- simple ways to elicit the parameters of the model by reasoning on hypothetical data
- sets of hyperparameters allow a full sensitivity analysis reflecting epistemic uncertainty on all parts of the model
- use credible intervals instead of bounds on expectations?
  - credible intervals do not save the example discussed, make elicitation and calculations much more complex

# Intermediate Summary

- bounds, rather than precise values, are desirable due to inferences being strongly sensitive to the prior particularly when faced with zero counts.
- simple ways to elicit the parameters of the model by reasoning on hypothetical data
- sets of hyperparameters allow a full sensitivity analysis reflecting epistemic uncertainty on all parts of the model
- use credible intervals instead of bounds on expectations?
  - credible intervals do not save the example discussed, make elicitation and calculations much more complex
- is it possible to generalise this method to other problems?

## **Canonical Conjugate Priors**

Multinomial, Poisson are examples for a canonical exponential family:

$$(x_1, ..., x_n) = \mathbf{x} \stackrel{iid}{\sim} \text{canonical exponential family}$$

$$p(\mathbf{x} \mid \theta) \propto \exp\left\{\langle \psi, \tau(\mathbf{x}) \rangle - nb(\psi)\right\} \qquad \left[\psi \text{ transformation of } \theta\right] \quad (19)$$
(includes also Binomial, Normal, Exponential, Dirichlet, Gamma, ...)
$$\text{conjugate prior:} \qquad p(\psi \mid n^{(0)}, \mathbf{y}^{(0)}) \qquad \propto \exp\left\{n^{(0)}[\langle \psi, \mathbf{y}^{(0)} \rangle - b(\psi)]\right]$$

$$\text{(conjugate) posterior:} \qquad p(\psi \mid n^{(0)}, \mathbf{y}^{(0)}, \mathbf{x}) \propto \exp\left\{n^{(n)}[\langle \psi, \mathbf{y}^{(n)} \rangle - b(\psi)]\right\}$$
where 
$$\mathbf{y}^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot \mathbf{y}^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{\tau(\mathbf{x})}{n} \quad \text{and} \quad n^{(n)} = n^{(0)} + n$$
Interpretation
$$\bullet n^{(0)} = \text{determines spread and learning speed}$$

$$\bullet \mathbf{y}^{(0)} = \text{prior expectation of } \tau(\mathbf{x})/n$$

## Bounds on Parameters = Imprecise Probability

Add imprecision as new modelling dimension: Sets of priors model uncertainty in probability statements and allow to better model partial or vague information on  $\theta$ 

## Bounds on Parameters = Imprecise Probability

Add imprecision as new modelling dimension: Sets of priors model uncertainty in probability statements and allow to better model partial or vague information on  $\theta$ 

Interpretation

smaller sets = more precise probability statements

Lottery A Number of winning tickets: exactly known as 5 out of 100  $\rightarrow P(win) = 5/100$ 

#### Lottery B

Number of winning tickets: not exactly known, supposedly between 1 and 7 out of 100  $\rightarrow$  P(win) = [1/100, 7/100]

# Bounds on Parameters = Imprecise Probability

Add imprecision as new modelling dimension: Sets of priors model uncertainty in probability statements and allow to better model partial or vague information on  $\theta$ 

```
Interpretationsmaller sets = more precise probability statementsLottery ALottery BNumber of winning tickets:<br/>exactly known as 5 out of 100<br/>\rightarrow P(win) = 5/100Number of winning tickets:<br/>not exactly known, supposedly<br/>between 1 and 7 out of 100<br/>\rightarrow P(win) = [1/100, 7/100]
```

Let hyperparameters  $(n^{(0)}, y^{(0)})$  vary in a set

➡ set of priors

Model framework has favourable inference properties (see Walter 2013,  $\S3.1$ ) and is very easy to handle:

• Hyperparameter set defines set of priors  $\mathcal{M}^{(0)}$ 

Model framework has favourable inference properties (see Walter 2013,  $\S3.1$ ) and is very easy to handle:

- Hyperparameter set defines set of priors  $\mathcal{M}^{(0)}$
- Due to conjugacy, set of posteriors M<sup>(n)</sup> defined by updated hyperparameter set

Model framework has favourable inference properties (see Walter 2013,  $\S3.1$ ) and is very easy to handle:

- Hyperparameter set defines set of priors  $\mathcal{M}^{(0)}$
- Due to conjugacy, set of posteriors M<sup>(n)</sup> defined by updated hyperparameter set
- $\rightarrow$  is easy:

$$n^{(n)} = n^{(0)} + n \qquad \mathbf{y}^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} \mathbf{y}^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{\tau(\mathbf{x})}{n} \qquad (20)$$

Model framework has favourable inference properties (see Walter 2013,  $\S3.1$ ) and is very easy to handle:

- Hyperparameter set defines set of priors  $\mathcal{M}^{(0)}$
- Due to conjugacy, set of posteriors M<sup>(n)</sup> defined by updated hyperparameter set
- $\rightarrow$  is easy:

$$n^{(n)} = n^{(0)} + n \qquad \mathbf{y}^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} \mathbf{y}^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{\tau(\mathbf{x})}{n} \qquad (20)$$

Often, optimising over (n<sup>(n)</sup>, y<sup>(n)</sup>) ∈ is also easy:
 closed form solution for y<sup>(n)</sup> = posterior 'guess' for τ(x)/n
 given <sup>-</sup> has 'nice' shape (as used in the common-cause model)

Model framework has favourable inference properties (see Walter 2013,  $\S3.1$ ) and is very easy to handle:

- Hyperparameter set defines set of priors  $\mathcal{M}^{(0)}$
- Due to conjugacy, set of posteriors M<sup>(n)</sup> defined by updated hyperparameter set
- $\rightarrow$  is easy:

$$n^{(n)} = n^{(0)} + n \qquad \mathbf{y}^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} \mathbf{y}^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{\tau(\mathbf{x})}{n} \qquad (20)$$

- Often, optimising over (n<sup>(n)</sup>, y<sup>(n)</sup>) ∈ is also easy:
   closed form solution for y<sup>(n)</sup> = posterior 'guess' for <sup>τ(x)</sup>/<sub>n</sub>
   given <sup>−</sup> has 'nice' shape (as used in the common-cause model)
- Model deals also well with prior-data conflict

# **Prior-Data Conflict**

### **Prior-Data Conflict**

- informative prior beliefs and trusted data (sampling model correct, no outliers, etc.) are in conflict
- "[...] the prior [places] its mass primarily on distributions in the sampling model for which the observed data is surprising" (Evans and Moshonov 2006)
- there are not enough data to overrule the prior

# **Prior-Data Conflict**

### Prior-Data Conflict

- informative prior beliefs and trusted data (sampling model correct, no outliers, etc.) are in conflict
- "[...] the prior [places] its mass primarily on distributions in the sampling model for which the observed data is surprising" (Evans and Moshonov 2006)
- there are not enough data to overrule the prior

#### The Problem

Many Bayesian models are insensitive to prior-data conflict!

# Scaled Normal Data $\mathbf{x} \stackrel{iid}{\sim} N(\mu, 1)$ : $\mu \sim N(\mathbf{y}^{(0)}, 1/n^{(0)})$



# Scaled Normal Data $\mathbf{x} \stackrel{iid}{\sim} N(\mu, 1)$ : $\mu \sim N(\mathbf{y}^{(0)}, 1/n^{(0)})$



# Conclusion

- Conjugate priors are a convenient tool for Bayesian inference but there are some pitfalls
  - Hyperparameters  $n^{(0)}$ ,  $y^{(0)}$  are easy to interpret and elicit
  - Averaging property makes calculations simple, but leads to inadequate model behaviour in case of prior-data conflict

# Conclusion

- Conjugate priors are a convenient tool for Bayesian inference but there are some pitfalls
  - Hyperparameters  $n^{(0)}$ ,  $y^{(0)}$  are easy to interpret and elicit
  - Averaging property makes calculations simple, but leads to inadequate model behaviour in case of prior-data conflict
- Sets of conjugate priors maintain advantages & mitigate issues
  - Hyperparameter set shape is important
  - ► Reasonable choice: rectangular  $= [\underline{n}^{(0)}, \overline{n}^{(0)}] \times [\underline{y}^{(0)}, \overline{y}^{(0)}]$ (Walter & Augustin 2009: generalised iLUCK-models, luck)
  - Bounds for hyperparameters are easy to interpret and elicit
  - Additional imprecison in case of prior-data conflict leads to cautious inferences if, and only if, caution is needed
  - Shape for more precision in case of strong prior-data agreement is in development (joint work with Frank Coolen and Mik Bickis)

## References

- Atwood, C. (1996). "Constrained noninformative priors in risk assessment". In: *Reliability* Engineering and System Safety 53, pp. 37–46. doi: 10.1016/0951-8320(96)00026-9.
- Evans, M. and H. Moshonov (2006). "Checking for Prior-Data Conflict". In: *Bayesian Analysis* 1, pp. 893–914. URL: http://projecteuclid.org/euclid.ba/1340370946.
- Good, I. (1965). The estimation of probabilities. Cambridge (MA): MIT Press.
- Høyland, Arnljot and Marvin Rausand (1994). System reliability theory: models and statistical methods. New York (NY): Wiley.
- Kelly, Dana and Corwin Atwood (2011). "Finding a minimally informative Dirichlet prior distribution using least squares". In: *Reliability Engineering and System Safety* 96.3, pp. 398–402. doi: 10.1016/j.ress.2010.11.008.
- Mosleh, A. et al. (1988). Procedures for treating common cause failures in safety and reliability studies: Procedural framework and examples. Tech. rep. NUREG/CR-4780. PLG Inc.
- Quaeghebeur, E. and G. de Cooman (2005). "Imprecise probability models for inference in exponential families". In: *ISIPTA '05*. Ed. by F. Cozman, R. Nau, and T. Seidenfeld. Manno: SIPTA, pp. 287–296.
- Troffaes, Matthias C. M., Gero Walter, and Dana L. Kelly (2014). "A Robust Bayesian Approach to Modelling Epistemic Uncertainty in Common-Cause Failure Models". In: *Reliability Engineering & System Safety* 125, pp. 13–21. DOI: 10.1016/j.ress.2013.05.022.

Walley, P. (1991). Statistical Reasoning with Imprecise Probabilities. London: Chapman and Hall.

- Walley, P. (1996). "Inferences from multinomial data: Learning about a bag of marbles". In: *Journal of the Royal Statistical Society, Series B* 58.1, pp. 3–34.
- Walter, Gero (2013). "Generalized Bayesian Inference under Prior-Data Conflict". PhD thesis. Department of Statistics, LMU Munich. URL: http://edoc.ub.uni-muenchen.de/17059/.
   Walter, Gero and Thomas Augustin (2009). "Imprecision and Prior-data Conflict in Generalized Bayesian Inference". In: Journal of Statistical Theory and Practice 3, pp. 255–271. DOI: 10.1080/15598608.2009.10411924.