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The Density Ratio Class a.k.a. Interval of Measures

Define a set of priorsM by

Ml,u =
{
p(ϑ) : ∃c > 0 : l(ϑ) ≤ cp(ϑ) ≤ u(ϑ)

}
,

where the lower and upper density functions l(ϑ) and u(ϑ)
are bounded non-negative functions for which l(ϑ) ≤ u(ϑ) ∀ ϑ ∈ Θ.

If l(ϑ) > 0 ∀ ϑ, then

Ml,u =

{
p(·) :

p(ϑ)

p(ϑ′)
≤

u(ϑ)

l(ϑ′)
∀ ϑ, ϑ′

}
,

hence the name ‘density ration class’ [4, 1].
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Properties (see, e.g., [6, §4.2.2])

Mλl,λu =Ml,u ∀λ > 0
Invariance under updating: set of posteriors via GBR is again a
density ratio classMl|x,u|x , with lower and upper density functions
the posteriors based on l(ϑ) and u(ϑ).
Update of l(ϑ) and u(ϑ) can be done by updating a single
p(ϑ) ∈ Ml,u and then reweighting it to get l(ϑ | x) and u(ϑ | x).
Closed-form expressions for posterior inferences, e.g.:

Pl,u(A | x) = min
p∈Ml|x,u|x

Pp(A) =

1 +

∫
Ac u(ϑ | x) dϑ∫
A l(ϑ | x) dϑ


−1

Pl,u(A | x) = max
p∈Ml|x,u|x

Pp(A) =

1 +

∫
Ac l(ϑ | x) dϑ∫
A u(ϑ | x) dϑ


−1
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Imprecision

Posterior bounding functions l(ϑ | x) and u(ϑ | x) will be more
pointed, but imprecision ofMl|x,u|x is the same asMl,u:

u(ϑ | x)

l(ϑ | x)
=

f(x | ϑ)u(ϑ)

f(x | ϑ)l(ϑ)
=

u(ϑ)

l(ϑ)

Ml|x,u|x does not converge to a one-element set for n→∞:
there is never enough data for prior imprecision to vanish!
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Density Class Ratio Models

Rinderknecht et al. [6]:
I Expert elicitation ofMl,u (given parametric families for l and u)

based on probability-quantile (-interval) pairs.
I Approximations to l(ϑ | x) and u(ϑ | x) by MCMC.

I High posterior imprecision in applications examples.
Pericchi & Walley [5]:

I Class with l(ϑ) ∝ N(µ, σ2) and u(ϑ) ∝ 1,
where l(ϑ) = u(ϑ) at ϑ = µ.

I All p ∈ Ml,u must thus have their mode at µ.

I Reasonable imprecision behavior in case of prior-data conflict.
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Imprecision in Pericchi & Walley model

Imprecision inceases in |x̄ − µ| for fixed n
I prior-data conflict sensitivity

Imprecision decreases in n when x̄ = µ

Imprecision remains approximately constant when x̄ , µ
I same behaviour as in Rinderknecht examples

Imprecision decreases in x̄ = µ case because all p ∈ Ml|x,u|x
concentrate their mass at µ, where l(ϑ | x) ≈ u(ϑ | x).
I you need l(ϑ) ≈ u(ϑ) for some ϑ for decreasing imprecision

Other ways to have decreasing imprecision?
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Models by Coolen [2, 3]

Let u(ϑ) = c0 · l(ϑ) , where c0 > 1 constant, and

l(ϑ) = l(ϑ | ψ(0)) be the conjugate prior with hyperparameter ψ(0) .

Then l(ϑ | x, ψ(0)) = l(ϑ | ψ(0))f(x | ϑ) = l(ϑ | ψ(n)), and define

u(ϑ | x, ψ(0)) =:
cn

c0
u(ϑ | ψ(0))f(x | ϑ) = cnl(ϑ | ψ(n)) ,

where cn is introduced to let imprecision ofMl,u decrease with n.

Proposal of Coolen [2] for cn such that cn → 1 for n→∞.

No prior-data conflict sensitivity, because c0 may not depend on ϑ.
When instead different shapes are allowed for l(ϑ) and u(ϑ) [3],
similar behaviour as previous models.
UpdateMl,u −→Ml|x,u|x violates the GBR!
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Suggestion

Combine ideas from Pericchi & Walley, Coolen, and Rinderknecht?
Have l(ϑ) ≈ u(ϑ) for some ϑ.
Reduce posterior imprecision by having a cn → 1 for n→∞.
Elicit (and process?) Ml,u similar to Rinderknecht.
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9


