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Abstract

REGRESSION is the central concept in applied statis-
tics for analyzing multivariate, heterogenous data: The

influence of a group of variables on one other variable is
quantified by the regression parameter β. Here we extend
standard Bayesian inference on β in linear regression mod-
els by considering imprecise conjugate priors. Inspired by a
variation and an extension of a method for inference in i.i.d.
exponential families presented at ISIPTA’05 by Quaeghe-
beur and de Cooman, we develop a general framework for
handling linear regression models including analysis of vari-
ance models, and discuss obstacles in direct implementa-
tion of the method. Then properties of the interval-valued
point estimates for a two-regressor model are derived and
illustrated with simulated data. As a practical example we
take a small data set from the AIRGENE study and consider
the influence of age and body mass index on the concen-
tration of an inflammation marker.

1. Bayesian Analysis of Regression Models

THE regression model is noted as follows:

z = Xβ + ε , X ∈ IRk×p , β ∈ IRp , z ∈ IRk , ε ∈ IRk ,

where z is the response, X the so-called design matrix with
the p regressors collected column by column, and β is the
p-dimensional vector of regression coefficients.

εi
i.i.d∼ N(0, σ2) =⇒ ε ∼ Nk(0, σ

2I)) (σ2 known)

X is considered fixed and non-stochastic, and so

z | β ∼ Nk(Xβ, σ
2I) .

In principle several conjugate priors to this likelihood exist.
The standard choice (see, e.g., [2, p. 244ff]), on which we
focused in our work, is

β ∼ Np
(
β(0), σ2Σ(0)

)
with β(0) ∈ IRp , Σ(0) ∈ IRp×p p.d. ,

i.e. p(β) =

1

|Σ(0)|
1
2(2π)

p
2(σ2)

p
2

exp

{
− 1

2σ2

(
β − β(0)

)T
Σ(0)−1(

β − β(0)
)}
. (1)

The posterior, calculated by applying Bayes’s rule p(β | z) ∝
p(z | β) p(β), is then Np

(
β(1), σ2Σ(1)

)
with posterior param-

eters
β(1) =

(
XTX + Λ(0)

)−1 (
XTz + Λ(0)β(0)

)
(2)

Σ(1) =
(
XTX + Λ(0)

)−1
, where Λ(0) = Σ(0)−1

. (3)

The model of Bayesian regression analysis based on the
standard prior will be called normal regression model.
(A different conjugate prior is derived in [6].)

2. Classical Bayesian Inference and LUCK-models

WE distinguish certain standard situations (called mod-
els with ‘Linearly Updated Conjugate prior Knowl-

edge’ (LUCK) here) of Bayesian updating on a parameter
ϑ based on a sample w with likelihood f (w |ϑ) by

p(ϑ |w) ∝ f (w |ϑ) · p(ϑ) , (4)

where the prior p(ϑ) and the posterior p(ϑ |w) fit nicely to-
gether in the sense that
i) they belong to the same class of parametric distributions,

a case where they are called conjugate, and, in addition,
ii) the updating of one parameter (y(0) below) of the prior is

linear.
Definition 1 Consider classical Bayesian inference on ϑ
based on a sample w as described in (4), and let the prior
p(ϑ) be characterized by the (vectorial) parameter ϑ(0). Call(
p(ϑ), p(ϑ |w)

)
a LUCK-model of size q in the natural param-

eter ψ with prior parameters n(0) ∈ IR+ and y(0) and sample
statistic τ (w) iff there exist q ∈ IN, transformations ϑ 7→ ψ,
ϑ 7→ b(ψ) and ϑ(0) 7→ (n(0), y(0)) such that

p(ϑ) ∝ exp
{
n(0)[〈ψ, y(0)〉 − b(ψ)

]}
(5)

and p(ϑ |w) ∝ exp
{
n(1)[〈ψ, y(1)〉 − b(ψ)

]}
, where (6)

n(1) = n(0) + q and y(1) =
n(0)y(0) + τ (w)

n(0) + q
. (7)

Theorem 2, relating LUCK-models with the normal regres-
sion model, was formulated in the following way:
Theorem 2 Consider the normal regression model de-
scribed by the prior p(β) from (1) with prior parameters β(0)

and Σ(0), and the multivariate normal posterior defined by
(2) and (3). Fixing a value n(0),

(
p(β), p(β | z)

)
constitutes a

LUCK-model of size 1 with prior parameters

y(0) =
1

n(0)

(
Λ(0)

Λ(0)β(0)

)
=:

(
y

(0)
a

y
(0)
b

)
(8)

and n(0) and sample statistic

τ (z) = τ (X, z) =

(
XTX
XTz

)
=:

(
τa(X, z)
τb(X, z)

)
. (9)

Proof: The proof is given in [5].

3. Imprecise Priors for Inference in LUCK-models

TO create sets of priors, we rely on the work of Quaeghe-
beur and de Cooman [3], who consider certain LUCK-

models for Bayesian inference based on i.i.d. observations
from regular, linear canonical exponential families [1, p. 202
and p. 272f]. The central idea of [3] is that the parameteriza-
tion in terms of y(0) and n(0) is perfectly suitable to be gen-
eralized to credal sets of priors. As the crucial point is that
these parameters are updated linearly, [3]’s technique can
be applied to any LUCK-model, leading to the same impre-
cise calculus as in the IDM (which is contained as a special
case, y(0) ↔ t, n(0) ↔ s): Let y(0) vary in some set Y(0) ⊂ Y
and take as the imprecise prior the credal set consisting of
all convex mixtures of all p(ϑ) from (5) created by varying
y(0) in Y(0). The posterior credal set is then characterized
by its extreme points, the set of posteriors p(ϑ |w) arising
from (6) by varying y(1) in Y(1), where

Y(1) =

{
n(0)y(0) + τ (w)

n(0) + n

∣∣∣∣∣ y(0) ∈ Y(0)

}
⊂ Y . (10)

Y(1) can be seen as a shifted and rescaled version of Y(0):

Y(1) =
n(0)

n(0)+ n
· Y(0)+

n

n(0)+ n
· 1

n

n∑
i=1

τ (wi) , (11)

which suggests a vivid interpretation of n(0) as “prior
strength” or “pseudocounts”, as it plays the same role for
the prior as n for the sample.

The set Y(0) should reflect the prior information on the pa-
rameters, but must be bounded to avoid vacuous posterior
inference, as choosing y(0)

j = ∞ would lead to y(1)
j = ∞.

4. The Imprecise Normal Regression Model

FOR multidimensional Y, [3] suggest to bound Y(0) by
some global constraints. Their suggestion for the multi-

variate normal distribution is adopted here, leading to
1

n(0)
Λ(0) positive definite (p.d.), and (12)

1

n(0)

(
Λ(0) − 1

n(0)
Λ(0)β(0)β(0)TΛ(0)

)
p.d. (13)

To apply the normal regression model as an imprecise prob-
ability model, we have to proceed as follows:
1. Prior knowledge on β must be expressed as a set of val-

ues of β(0) and Λ(0).
2. This set must be “translated” into a set of values of y(0)

such that the resulting set Y(0) satisfies (12) and (13).
3. Then each y(0) in Y(0) is linearly updated by (7) to y(1).
4. The obtained set Y(1) must be “retranslated” into an in-

terpretable set of values of β(1) and Λ(1).
Defining the sets by element-wise lower and upper bounds,
e.g.,

β
(0)
j ∈

[
β

(0)
j , β

(0)
j

]
j = 1, . . . , p ,

the “translation” step 2. turns out to be quite difficult, as it
holds that

y
(0)
bi = min

β(0),Λ(0)

1

n(0)

p∑
j=1

λ
(0)
ij β

(0)
j

y
(0)
bi = max

β(0),Λ(0)

1

n(0)

p∑
j=1

λ
(0)
ij β

(0)
j ,

and maximization and minimization must be executed only
on combinations of values between the bounds on β(0) and
Λ(0) that are admissible according to (12) and (13), who
form polynomial constraints of degree p when checking
wether all eigenvalues are positive. Thus, analytical results
for arbitrary p are not within reach.

5. Application

TO obtain interpretable analytical expressions, we fo-
cused on the case of two regressors, the results of

which can be found in detail in [4]. The resulting model
features reasonable properties, was tested in a short sim-
ulation study and was applied to a small data set from the
AIRGENE study, assessing the influence of age and body
mass index on the concentration of an inflammation marker.
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Figure 1: Illustration of asymptotic behavior of interval-
valued regression parameter estimates.
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Figure 2: Exemplary results for the AIRGENE data.
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